Using Extended Features in ProModel

Instructor Info:
Rebecca Santos
Technical Support Engineer
Office: 801.223.4671
rdossantos@promodel.com

This publication may not be reproduced in whole or in part in any form or by any means, electronic or mechanical, including photocopying, recording, or otherwise, without prior written permission of ProModel Corporation. ProModel and MedModel are registered trademarks of ProModel Corporation.
Course Objectives

During this Webinar on ProModel Extended Features you will learn how to:

- Create models in collaboration with coworkers
- Watch more than one view during the simulation
- Analyze and Manipulate RDB files in Excel
- Use Excel to create and edit models
- Optimize simulation models
ProModel Extended Features

- ProModel has some Power Tools that can make building models easier and faster.
 - Multi-View Runner
 - ProRDB
 - Model Collaborator
 - ProActiveX
 - SimRunner
1) Multi-View Runner
Views in ProModel

- It is possible to define views in ProModel
Views in ProModel

Receiving Dock Model

Presented by
High Performance Concepts, Inc.
4129 River Cliff Chase
Marietta, Ga. 30067
(404) 859-0161

Cycle Times (min.)
- Semi-Trucks: 0.00
- Small Trucks: 0.00
- Pallet Loads: 0.00
- Items: 0.00

Total Semi Trucks: 0000
Total Small Trucks: 0000
Pallets Put Away: 0000
Items Put Away: 0000
Avg. Pallets Per Load: 0.00
Avg. Items Per Load: 0.00

ProModel
Better Decisions—Faster
Views in ProModel

- Enter Name
- Click Add
- Change Zoom Options to Update Selected View
Views in ProModel
The Views window shows up during the simulation letting the user select which view he/she chooses to watch. However, it’s only possible to watch one view at a time.
Multi-View Runner

- Multi-View Runner allows you to watch more than one view at a time

- Creates a .pmvr file
Multi-View Runner

- A monitor selection portion of the Multi-View Runner dialog box allows you to select what views you want to be displayed on the monitor.
Multi-View Runner

Configure the placement of your views

- None
- Full Screen
- Side by Side
- Four
Multi-View Runner

The drop-down list allows the user to select the views they want to display on each screen.
Multi-View Runner

- Saving the configuration without changing its folder or name
- Running the simulation
- View synchronization interval
- Creation of a new configuration
- Opening an existing configuration
- Saving the configuration in a different folder or with a different file name
- List for selection of the scenario you want to simulate
While the simulation is running the Views window and a pop-up simulation control bar box is displayed.
2) ProRDB
RDB Files

- When a simulation is run, RDB files are created.
- These files contain the basic statistics created during the simulation.
- Each scenario will have its own RDB file.
The information stored in the RDB files is the data displayed on Output Viewer.

They are located under:

C:\Users\<username>\Documents\ProModel\Output
ProRDB

- Extract all or part of the standard ProModel output statistics

C:\Program Files (x86)\ProModel Corporation\ProModel\10.0\Power Tools
ProRDB

- Allows using Excel to retrieve model output data
- Granted, of minimal benefit, given the power of the standard ProModel output viewer
- Nevertheless, allows non-ProModel users to extract key metrics from output data
ProRDB

- Open ProRDB
- Specify the RDB file
- Specify the Replication and Period of interest
- Get Data
3) Model Collaborator
Collaboration on Model Creation

- Collaboration on model creation can speed up the process
- ProModel offers 3 tools that can help in this process:
 - Model Collaborator
 - Merge
 - Submodel
 - Model
Collaborating on Model Creation
Model Merge

- Allows merging two different models
SubModel Merge

- Allows you to merge two different models even if they have duplicated locations, entities, attributes or variables.
 - If there are locations, entities, attributes or variables with the same name it will add a suffix or a prefix to the duplicate locations, entities, attributes or variables of the model that is being merged to the main model.
Model Collaborator

- Guides you through the merging Process in wizard-like interface
4) ProActiveX

<table>
<thead>
<tr>
<th>Category</th>
<th>View</th>
<th>GET</th>
<th>BUILD</th>
<th>CLEAR</th>
<th>CLEAR and UPDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrays</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Arrival Cycles</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Arrivals</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Attributes</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Entities</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>External Files</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>General Info</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locations</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Location Graphics</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Mazes</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Path Networks</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Processing</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Resources</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Scenarios</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>SIMT Assignments</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Simulation Options</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streams</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Subroutines</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Table Functions</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>User Distributions</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
<tr>
<td>Variables</td>
<td>View</td>
<td>GET</td>
<td>BUILD</td>
<td>CLEAR</td>
<td>CLEAR and UPDATE</td>
</tr>
</tbody>
</table>
ProActiveX

- Extract & Build text and graphics items in a model
- Use Excel techniques to construct items
 - COPY / PASTE sections of items
 - FILL DOWN (iterating numbers & names)
 - CONCATENATE items to build other items
- Automate model Open & Save & Run
ProActiveX

- Written in VBA
- Allows you to edit the code.
ProActiveX

- Can be found at "C:\Program Files (x86)\ProModel Corporation\ProModel\10.0\Power Tools\ProActiveX.xlsb"

- The released version ProModel 2018 has a ProActiveX file that brings up the old User Interface. This was fixed and the new version of ProActiveX can be found in the Solutions Café (https://www.promodel.com/solutionscafe/).
Load the model so you can start working on it.
Click on GET ALL to import the model information to ProActiveX
- Click on View start editing
ProActiveX

- Click on Build ALL when you finish editing
- Save your model and click Open in ProModel
ProActiveX

- Special notes
 - Always Save a backup copy of your model before making any changes
 - Always carefully check to see if ProActiveX did what you expected
5) SimRunner
SimRunner

- Optimization tool

Finding the best solution for a System (model) given some constraints (inputs) driving toward a Goal (objective function)
SimRunner

- When to use it
 - Want to play with certain key system controls to:
 - **Maximize** throughput; **Minimize** WIP; **Maximize** utilization of key bottleneck machine; **Minimize** delays; **Min/Max** whatever
Scenarios to Find “Best” Solution

- Goal: Maximize profit
- Can change:
 - Quantity of Operators
 - Batch Size
 - Use Robot or Not

\[
\text{Profit} = \text{Value of product} \times \text{Quantity Produced} - \text{Cost of raw material} - \text{Cost of Labor} - \text{Cost of Robot}
\]
Scenarios

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Baseline</th>
<th>Model Parameters</th>
<th>1 operator, batch 1</th>
<th>1 operator, batch 50</th>
<th>5 operators, batch 1</th>
<th>5 operators, batch 50</th>
<th>5 operators, batch 25</th>
<th>1 operator, batch 25</th>
<th>With robot, 5 oper, batch 25</th>
<th>Without robot, 5 oper, batch 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number operators</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Batch size</td>
<td>50</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Value of each gear</td>
<td>15.55</td>
<td>15.55</td>
<td>15.55</td>
<td>15.55</td>
<td>15.55</td>
<td>15.55</td>
<td>15.55</td>
<td>15.55</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hourly rate operator</td>
<td>15</td>
</tr>
<tr>
<td>mUse_Robot_T1_N0</td>
<td>1</td>
</tr>
<tr>
<td>mDaily_cost_of_Robot</td>
<td>1000</td>
</tr>
<tr>
<td>mAnimation_speed</td>
<td>55</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
How many Scenarios are possible?
- Parameters choices * Parameters choices = BIG!!!

For example:
- Between 1 & 5 operators
- Batch size between 1 & 50
- Use a robot or not (2 choices)
- Therefore: (5) * (50) * (2) = 500 Scenarios!!!

Do you want to create 500 scenarios to find the right solution?
Steps for Using SimRunner

- Create simulation model
 - Scenario Parameter macros
 - Output metrics
- Open SimRunner
- Define Objective Function
- Define Input Factors
- Define Optimization control parameters
- Run Optimization
- Examine results ... We have a winner!!!
SimRunner Three Main Parts

Steps for current activity

Setup … Analyze … Optimize
Set Up Project
Select Model Name (if starting new Project) or Project Name (if previously created)
What is an Objective Function?

- **GOAL!!**
- Desired Minimize or Maximize of item(s)
- Equation that calculates desired metric
 - Example: $v_{\text{Profit}} = v_{\text{Revenue}} - v_{\text{Cost}}$
 - Example: $v_{\text{WIP}} = (\text{CONTENTS}(x) + \text{CONTENTS}(y) + \ldots)$
 - ...
Define Objectives

Pick anything in this list to Minimize or Maximize

Weight Factor

Target Range … For identifying Infeasible Solutions
Define Objective Function

- Choose Item
 - For this model: v_Profit – Current Value (current value = At the End of the Run)

- Choose:
 - Maximize or Minimize
 - Target Range, if any
 - Weight

- If you change something, don’t forget to press the Update button
Define Inputs

- The Changeable Parameter to use for creating Scenarios must be numeric Scenario Macros
Define Inputs

Choose Integer or Real

Scenario Parameter Macros

Specify Lower/Upper Limits

Don’t forget the Update Button
SimRunner Project

- Save the Project
 - Creates a .OPT file
Analyze the Model

- Helps determine:
 - Number of replications
 - Warmup period
- However...
 - ~30 Reps usually OK
 - You’ll know if Warm-up is appropriate

Run Analyze… Reports suggestions
Run the Optimization - Settings

- **Profile**
 - Cautious, (more runs)
 - Moderate,
 - Aggressive (less runs)
 - Convergence %
- **No Animation**
- **# of Replications**
- **Warmup/Run Time**
- **Confidence Level**
Run the Optimization

- Run...
 - Results for each run...
 - “Performance Plot”
 - Green – Each run
 - Red – Best so far
 - Table of Results

- When finished...
 - “Optimization Converged”
Examine the Results

- Best solution is at the top
 - For our example:
 - $18,300 profit for the day
 - 5 Operators
 - Batch size: 4 or 7
 - Yes, Use the Robot
Examine the Results

- But more can be gleaned...
 - What if someone doesn’t show up for work (4 Operators instead of 5):
 Profit of only $17,260
Examine the Results

- Regarding the Batch Size...
 - How sensitive is the Profit?
 Not very ($250/day), for sizes 3,4,5,6,7,8,9,10
 - What if there are “standard” containers?
 Then don’t fill every hole

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Objective Function</th>
<th>vProfit: Current Value</th>
<th>Number of operators</th>
<th>Batch size</th>
<th>mUse_Robot_Y1_N0</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>18300.000</td>
<td>18300.000</td>
<td>5.000</td>
<td>4.000</td>
<td>1.000</td>
</tr>
<tr>
<td>103</td>
<td>18300.000</td>
<td>18300.000</td>
<td>5.000</td>
<td>7.000</td>
<td>1.000</td>
</tr>
<tr>
<td>96</td>
<td>18250.000</td>
<td>18250.000</td>
<td>5.000</td>
<td>8.000</td>
<td>1.000</td>
</tr>
<tr>
<td>99</td>
<td>18200.000</td>
<td>18200.000</td>
<td>5.000</td>
<td>6.000</td>
<td>1.000</td>
</tr>
<tr>
<td>58</td>
<td>18200.000</td>
<td>18200.000</td>
<td>5.000</td>
<td>5.000</td>
<td>1.000</td>
</tr>
<tr>
<td>105</td>
<td>18200.000</td>
<td>18200.000</td>
<td>5.000</td>
<td>9.000</td>
<td>1.000</td>
</tr>
<tr>
<td>110</td>
<td>18200.000</td>
<td>18200.000</td>
<td>5.000</td>
<td>10.000</td>
<td>1.000</td>
</tr>
<tr>
<td>90</td>
<td>18050.000</td>
<td>18050.000</td>
<td>5.000</td>
<td>3.000</td>
<td>1.000</td>
</tr>
<tr>
<td>79</td>
<td>17300.000</td>
<td>17300.000</td>
<td>5.000</td>
<td>14.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Examine the Results

- Regarding the Robot...
 - What's it's worth?
 - $13,600 - $18,300 = -$4,700 day loss without
Examine the Results

- How about if we don’t use Profit?
 - Max Throughput, Min WIP, Min Labor – w/ Weights

Best Solution: 4 Operators , Batch Size = 16 , Use Robot
Different Analysis… Different Results
FINISHED

- Thanks for attending this ProModel Extended Features Webinar! We hope it was helpful.
- Remember, help is only an email or phone call away.
- Good luck and happy modeling!