
1

04/2018 Version 9.3

PCS Refresher Training Webinar
For Software Version: 9.3

Copyright © 2018 ProModel Corporation

556 E Technology Way
Orem, UT 84097

801-223-4600

This publication may not be reproduced in whole or in part in any form or by any means, electronic or mechanical, including photocopying, recording, or otherwise,
without prior written permission of ProModel Corporation. ProModel and MedModel are registered trademarks of ProModel Corporation.

This course is intended for Process

Simulator (PCS) Professional users

who have previously completed

PCS Basic or Essentials Training.

Our hope is that this training will

teach PCS users several features

that increase their skill sets so they

can maximize use of the software to

benefit their business.

Instructor Info:

Rebecca Santos

Technical Support Engineer

Office: 888.PROMODEL

rdossantos@promodel.com

Using Arrays to Create Custom Excel Reports from Models

mailto:dtucker@promodel.com

2

During this Webinar you will learn how to:

 Set up & use Arrays to capture information about the
behavior of a model

 Create some new statements using identifying
functions in Free Form logic to populate Arrays as
Custom Excel Reports

 Use Subroutines to repeat logic

 Use the Array Export feature

 Answer Attendees’ questions (as time allows)

3

Feature Capability Free Pro

2-Dimensional Arrays

Allows the storing of large amounts of data in a single data

structure for the model to access and use. Yes

Import/Export Data via Excel

Allows the population of arrays from an Excel file when the

model starts simulating. Yes

Advanced Subroutine Functionality

Allows passing of parameters to subroutines and returning

calculated values, In turn, this enables the leveraging of

arrays and parallel process subroutines. Yes

Advanced Logic Builder

Incorporates advanced statements and functions in the

Logic Builder - e.g. referencing entities, activities or

resources by index in arrays and subroutines. Yes

Complex Expressions in Property Fields

Enter subroutines with a return value in place of a numerical

value. Yes

Free Form Logic

An additional window that allows logic to be entered

without the Logic Builder, which enables rapid model

building. Yes

Intellisense for Fast Logic Creation

An intelligent list of statements, functions and model

elements that pops up when writing logic in free Form

Logic. Yes

Syntax Guide for Quick Logic Help

A tool pit that appears in free Form Logic, which displays the

syntax for the statement or function being used. Yes

4

 An array is a matrix of values
 Each cell works like a variable
 A reference to a cell in an array can be

used anywhere a variable can be used
 Refer to a specific array value by using

the Array name followed by the
specific value’s row & column cell
address.

 For example, the value 18 located
above in row 2 and column 3 has a cell
address of [2,3] so it would be referred
to as Array1[2,3].

Cell [1,1] Cell [1,2] Cell [1,3] Cell [1,4]

Cell [2,1] Cell [2,2] Cell [2,3] Cell [2,4]

Cell [3,1] Cell [3,2] Cell [3,3] Cell [3,4]

10 15 15 20

12 15 18 25

15 15 10 10

Array1:

Array1 Cell Addresses:

1 2 3 4

1

2

3

5

 Name and define in the Arrays Tab

Name of

the Array

Row and Column

Dimensions

Allowed types:

Integer, Real, or Expression

Clear (re-import)

or Keep array data

between replications

6

 Reference an Array: ArrayName[row, column]
 Embed attribute or variable references within the array

dimensions:

 Use an Array in Logic:

Wait yArray_ProcessTime[3, 45]

Inc yCounter[2, aJobType]

7

 Statistics are not generated for arrays

 All array cells are initially 0 by default

 An array may be referenced from any logic

 Frequently initialized directly from a spreadsheet

8

 Import requires user to

specify start and end cells to

form a range (end cell is

optional)

9

 The spreadsheet is
populated at model
termination

 When exporting
multiple replications
or scenarios, data from
each one is saved to
its own worksheet

10

Scenario:

We have a model with multiple resources and Get statements. Oftentimes we

call a resource and there is a delay in the time we request the resource until

they are available. How can we track and report specifics about these delays?

Goals:

1. Capture the elapsed time from when the Get statement was issued until

the Resource arrived (and processing then continues)

2. In addition to this elapsed time, record the Activity from which the request

was issued, and which Resource was actually captured.

3. Capture this data in an Excel spreadsheet (through the use of arrays)

11

 Let’s start by talking through the steps required.

(Your instructor will step you through an overview of the model)

 The starting model has two resources defined:
◦ Copy_Boy (3 units) and Copy_Girl (2 units)

 In the Processing at each station (except Order_Que and Shipping),
there is a statement to Get a resource before waiting the defined
processing time. We release the captured resource in Routing logic.

Get Copy_Boy Or Copy_Girl

12

Order

Queue

Prepress
BW

Printing

Color

Printing
Binding 1

Shipping
Binding 2

Product 1

Product 2

(Exit)

Copy Boy Copy GirlCopy Boy.2 Copy Girl.2Copy Boy.3

13

 Step 1: Row Counter

Each entity entering the logic will increment a Variable named vProcessStep.

This variable will then be assigned to the Entity Attribute aRequestOrder.

Inc vProcessStep

aRequestOrder = vProcessStep

 We do this because multiple entities will be calling this logic possibly

simultaneously. This gives each call of this logic its own row number in the

array—a unique row identifier within the array.

14

 Step 2: Elapsed Time

Because we want to capture the time that has elapsed, we will need a REAL

attribute, aRequestTime, to record the time that the Get statement was

issued. This assignment occurs right before the Get statement is issued.

Because there is no processing time required for the Assignment, the Get

statement is issued at the exact same simulation clock time as the

aRequestTime is assigned the current clock time:

aRequestTime = Clock()

Get Copy_Boy Or Copy_Girl

15

Our array will be defined so that each row records the data from each unique process step. Each
column will hold specific categories of data:

 Column One: Counter number (Row number)
This is optional, but basically provides an index number to your array results.

 Column Two: Location Name
This will record the name of the location (Activity) from which the Get statement was issued.

 Column Three: Elapsed Time
This will be a calculation, based on the difference between the new clock time (after the Resource
arrived) and the time the Get statement was issued.

 Column Four: Captured Resource Name
This will record the name of the Resource that responded to the Get request.

If the Activity name and the Resource Name vary,
how will we know what they are?

16

Syntax for use within expression arrays:

 Loc(Location()) Returns the name of the Activity where the
entity is currently processing

 Res(OwnedResource()) Returns the name of the most
recently captured Resource

 Note that these Functions (Loc & Res) can only be used in Free
Form logic.

17

 Our array will be defined so that each row records the data from each unique process step. Each

column will hold specific categories of data:

 Column One: Counter number (Row number)

This is optional, but basically provides an index number to your array results.

=aRequestOrder

 Column Two: Location Name

This will record the name of the location from which the Get statement was issued.

=Loc(Location())

 Column Three: Elapsed Time

This will be a calculation, based on the difference between the new clock time (after the Resource

arrived) and the time the Get statement was issued.

=Clock() – aRequestTime

 Column Four: Captured Resource Name

This will record the name of the Resource that responded to the Get request.

=Res(OwnedResource())

18

 Since we know we have four columns of data, our array will be four columns

wide. We don’t, however, know how many rows we need. We will

approximate with 3000 rows.

Array Name: yResourceWaitStats

Array Dimensions: 3000, 4

Array Type: Expression

Export File: CustomReport.xlsx

19

Inc vProcessStep

aRequestOrder = vProcessStep

aRequestTime = Clock()

Get Copy_Boy OR Copy_Girl

//firstcolumn: counter number

yResourceWaitStats[aRequestOrder,1] = aRequestOrder

//second column: location name

yResourceWaitStats[aRequestOrder,2] = Loc(Location())

//third column: elapsed time

yResourceWaitStats[aRequestOrder,3] = Clock() – aRequestTime

//fourth column: owned resource (most recently captured)

yResourceWaitStats[aRequestOrder,4] = Res(OwnedResource())

 Wait (this takes place in the general time field or multi-entity fields)

 Free All will be added in the Routings to release the captured Resource

20

 You could copy and paste the report steps to each Process record

where we are getting the Copy_Boy or Copy_Girl.

 OR… you could create the lines of code within a Subroutine and

call the Subroutine as needed.

21

• User defined block of logic

• Useful for calling identical logic from multiple places

• Changes can be made in the subroutine code and the logic is reflected
through the entire model.

• Similar to macros, but with added functionality of lines of logic (not just
value substitution).

• Called by entering the Subroutine name in calling logic, followed by
parentheses.

22

 Most basic:

1. Calling logic starts the subroutine logic by calling sub name.

sNameOfSub()

2. Subroutine logic is executed

3. Simulation returns to executing the next line of code (in the calling logic)

 More advanced options:

• Activate Option

• Pass parameter values to subroutine

• Return a value back to the calling logic

23

 Define a Subroutine (subCustomReport)

 Use the Array design for the Subroutine Logic:
Inc vProcessStep

aRequestOrder = vProcessStep

aRequestTime = Clock()

Get Copy_Boy OR Copy_Girl

//firstcolumn: counter number

yResource_Wait_Stats[aRequestOrder,1] = aRequestOrder

//second column: location name

yResource_Wait_Stats[aRequestOrder,2] = Loc(Location())

//third column: elapsed time

yResource_Wait_Stats[aRequestOrder,3] = Clock() - aRequestTime

//fourth column: owned resource (most recently captured)

yResource_Wait_Stats[aRequestOrder,4] = Res(OwnedResource())

 Call the Subroutine from Process Operation logic at Prepress, BW_Printing,

Color_Printing, etc., replacing the Get statement currently there.

24

• Define the Array:
Array Name: yResourceWaitStats

Array Dimensions: 3000, 4

Array Type: Expression

Export File: CustomReport.xlsx

• Define the Subroutine(subCustomReport)

• Use the Array logic for the Subroutine Logic:
Inc vProcess_Step

aRequestOrder = vProcess_Step

aRequestTime = Clock()

Get Copy_Boy OR Copy_Girl

//firstcolumn: counter number

yResourceWaitStats[aRequestOrder,1] = aRequestOrder

//second column: location name

yResourceWaitStats[aRequestOrder,2] = Loc(Location())

//third column: elapsed time

yResourceWaitStats[aRequestOrder,3] = Clock() - aRequestTime

//fourth column: owned resource (most recently captured)

yResourceWaitStats[aRequestOrder,4] = Res(OwnedResource())

• Call the Subroutine from Activity Logic

25

 Exercise Results

26

 This scenario will be a modification of the last example. We have an additional
Resource: Manager -- ADD a Manager Resource of your choosing

 And, instead of:

Get Copy_Boy Or Copy_Girl

 We will have:

Jointly Get Copy_Boy And (Copy_Girl Or Manager)

 Now, when we record which Resource was actually captured, our statement only shows
the most recently captured resource.

=Res(OwnedResource())

 To get the list of all resources currently captured we will need to loop through “the list”
of owned resources.

Note the syntax. Free form

logic uses “Jointly Get.” Builder

logic uses “Get Jointly”

27

 OwnedResource() returns the most recently captured Resource
 OwnedResource(1) returns the first Resource captured (longest held)
 OwnedResource(2) returns the second Resource captured (if more than one)
 OwnedResource(3) returns the third Resource (if any)

 To get a list of Resources, we need to create a counting loop to cycle through:

 Int counter = 1
While counter < 4 do //use a value up to max number of resources you

expect
{

yArrayName[row, counter]=Res(OwnedResource(counter)) //column 1 lists
resource 1, etc.
Inc counter

}

28

 Scenario 1 method:

//fourth column: owned resource (most recently captured)

yResourceWaitStats[aRequestOrder,4] = Res(OwnedResource())

 New method:

//fourth column (and 5th and 6th): owned resource (loop through up to 3)

INT counter = 1

While counter < 4 do

{

yResourceWaitStats[aRequestOrder,3+counter]=Res(OwnedResource(counter))

Inc counter

}

Note: You will need to increase the dimensions of your array for the additional columns.

29

 Exercise Results

30

 Thanks for attending this PCS Advanced Features

Webinar! We hope it was helpful.

 The complete one day PCS Advanced course is also

available. For more information, contact the ProModel

Sales Director that works with your company.

 Remember, help is only an email or phone call away.

 Good luck and happy modeling!

Technical Support

888-776-6633

support@promodel.com

6 am - 6 pm M-F, Mountain Time

